On the σ_2 -curvature and applications

Maria de Andrade Costa e Silva 1 (maria@mat.ufs.br) UFS/UFMG

Abstract. Given a Riemannian manifold (M^n, g) , the σ_2 -curvature is defined by

$$\sigma_2 = -\frac{1}{2}|Ric_g|^2 + \frac{n}{8(n-1)}R_g^2.$$

In this talk, we define a symmetric 2-tensor canonically associated to the σ_2 curvature, then we introduce the notion of σ_2 -singular space and under certain hypotheses we prove a rigidity result². After, we give a necessary and sufficient condition for a CPE metric to be Eisntein in terms of σ_2 -singular spaces. Such a result improves our understanding about CPE metrics and Besse's conjecture with a new geometric point of view. Finally, we present an almost-Schur lemma for symmetric (2, 0)-tensors on a compact Riemannian manifold of nonnegative Ricci curvature with totally geodesic boundary.

 $^{^1\}mathrm{The}$ author was partially supported by PNPD/CAPES/Brazil.

²This work is joint with Almir Silva Santos - UFS